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Background of HIS Denoising

l Hyperspectral Images (HSIs)

l HSIs have widely used across many disciplines due to their
advantages in providing rich spectral information, which is useful
for distinguishing the substances in the scene.
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Background of HIS Denoising

l Why Study HSI Denoising ?

l HSIs in real applications are unavoidably corrupted by various
noises, i.e., Gaussian noise, salt and pepper noise, stripes,
deadlines, and so on.
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Background of HIS Denoising

l Existing Works

l The traditional model-driven methods:

l Require hand-crafted priors;

l Relatively long running time;
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Background of HIS Denoising

l Existing Works

l The traditional model-driven methods:

l Require hand-crafted priors;

l Relatively long running time;

l The deep learning (DL)-based methods:

l Require many training samples;

l May not have potentially mathematical interpretations.
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Background of HIS Denoising

l Deep Image Prior Framework

l Unsupervised DL method

l Direct optimization loss function:
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Background of HIS Denoising

l Deep Image Prior Framework

l Unsupervised DL method

l Direct optimization loss function:
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l is a random input tensor;

l is the observed HSI;
l is the CNN (i.e., U-Nets);
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Background of HIS Denoising

l Motivation

3*3 2D Convolution Dilated Convolution (L=2)
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The Proposed Model and Algorithm

l Proposed DIP-TR Model
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The Proposed Model and Algorithm

l Proposed DIP-TR Model

l is a random input tensor generated by the network;

l is core tensor of TR decomposition;

l are tuning parameters;

l is a fixed CNN with parameter .
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The Proposed Model and Algorithm

l PAM-based Algorithm

l We develop an efficient PAM-based algorithm to resolve the
proposed DIP-TR by alternately updating as follows:

l is the objective function;

l is the proximal parameter;

l is the iteration number.
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The Proposed Model and Algorithm

l PAM-based Algorithm



14

Numerical Experiments

l Compared Methods

l LRMR [Zhang et al. IEEE TGRS 2014];

l LRTDTV [Wang et al. IEEE JSTARS 2018];

l DIP-2D [Ulyanov et al. IEEE CVPR 2019].

l DIP-3D [Sidorov et al. IEEE ICCV 2019];
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Numerical Experiments

l Indian Pines (145!145!224) and Washington DC
Mall (256!256!191) as simulation data;

l HYDICE Urban (307!307!210) as real data;

l Dataset
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Numerical Experiments

l Dataset

l Indian Pines (145!145!224) and Washington DC
Mall (256!256!191) as simulation data;

l HYDICE Urban (307!307!210) as real data;

l Noise Case

l Case 2: Case 1+ the salt and pepper noise;

l Case 1: Gaussian noise;

l Case 3: Case2 + stripes and deadlines.
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Numerical Experiments
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Numerical Experiments
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Numerical Experiments
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https://wangjianli123.github.io/homepage/


