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Background of HIS Denoising

® Hyperspectral Images (HSIs)

e HSIs have widely used across many disciplines due to their
advantages in providing rich spectral information, which is useful
for distinguishing the substances in the scene.




Background of HIS Denoising

® Why Study HSI Denoising ?

e HSIs in real applications are unavoidably corrupted by various
noises, i.e., Gaussian noise, salt and pepper noise, stripes,
eadlines, and so on.
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® EXxisting Works

e The traditional model-driven methods:

e Require hand-crafted priors;

e Relatively long running time;




Background of HIS Denoising

® EXxisting Works

e The traditional model-driven methods:
e Require hand-crafted priors;

e Relatively long running time;

e The deep learning (DL)-based methods:

e Require many training samples;

e May not have potentially mathematical interpretations.




Background of HIS Denoising

® Deep Image Prior Framework
e Unsupervised DL method

e Direct optimization loss function:
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Background of HIS Denoising

® Deep Image Prior Framework
e Unsupervised DL method

e Direct optimization loss function:

6* = arg min |Fo (2) — V|7

e Z isarandom input tensor;

e U isthe observed HSI;
e F isthe CNN (i.e., U-Nets);




Background of HIS Denoising

® Motivation

3*3 2D Convolution Dilated Convolution (L=2)




The Proposed Model and Algorithm

® Proposed DIP-TR Model
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The Proposed Model and Algorithm

® Proposed DIP-TR Model

1
argmin —||Y — Fg (Z) — S||%
G50 2

+A[|Fe (2) — ®(IGDIIF + wllS|la,

e Z isarandom input tensor generated by the network;
o G:={GW g? G®1lis core tensor of TR decomposition;
e A and ;. are tuning parameters;

e Jg is afixed CNN with parameter 6.




The Proposed Model and Algorithm

® PAM-based Algorithm

e We develop an efficient PAM-based algorithm to resolve the
proposed DIP-TR by alternately updating G.S. @ as follows:

Gkl — arg min £(g. et 9" / )|g g"~||F (4a)
g

Sk+1 — arg min £ (Q"+1 S, 0’" /) ||S S’””F. (4b)
S

0%+l c argmin £(GFTL, Skt 9)
0

+L1Fe (2) = For (2)F. (o)

o £(G.S.0)is the objective function;

. . R ¥
e / isthe proximal parameter; w@m

o Lk 'is the iteration number.



The Proposed Model and Algorithm

® PAM-based Algorithm

Algorithm 1 The proposed DIP-TR denosing model based on the PAM optimization algorithm.

Input: The observed HSIY € RMXNXB TR rank r = [r1,72, 73], the parameters A, i and p.
Initialization: k = 0, Fgo (Z2) = Y.8% =0, ()2 =0,(G?)% =0, (G®)% = 0, kmax = 100, and e = 1073,
I: while || Fgrs1 (Z) — For (2) ||F /|| Fgr (2) ||F > € and k < kmax do

. k k k,T k =l
2 Update (g(n))k+1:foldg<<2)\f9k Eles (652 F0(cH) > x <2,\ (¢5Y)" (e52) +pI> >,n:1.2,

where G(#™) is obtained by multi-linear product of all core tensors except the n-th tensor in the order of n + 1 to n — 1.
V—Fgk (2)+p5*

‘C,O

3 Update S*+1 = shrink ( s . 1ip). where [shrink(X, §)]; . . = sign (i j,m ) max (|z; j m| — £, 0).
4 Update 6¥+! € argming ||V — Fg (2) — S¥1|2 + M| Fp (2) — 2(IG*HDI% + § 1Fe (2) — Fgr (2)|3-
5: end while

Output: The restored HSI Fg (2).
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Numerical Experiments

Compared Methods

e LRMR [Zhang et al. IEEE TGRS 2014];

e LRTDTV [Wang et al. IEEE JSTARS 2018];

e DIP-3D [Sidorov et al. IEEE ICCV 2019];

e DIP-2D [Ulyanov et al. IEEE CVPR 2019].




Numerical Experiments

® Dataset

e Indian Pines (145X145X224) and Washington DC
Mall (256 X256 X 191) as simulation data;

e HYDICE Urban (307 X307 X 210) as real data;




Numerical Experiments

® Dataset

e Indian Pines (145X145X224) and Washington DC
Mall (256 X256 X 191) as simulation data;

e HYDICE Urban (307 X307 X 210) as real data;

® Noise Case

e C(Case 1: Gaussian noise;

e (Case 2: Case 1+ the salt and pepper noise;

e C(Case 3: Case?2 + stripes and deadlines. w@m



Numerical Experiments

Table 1. The PSNR (dB), SSIM, and SAM values of the recovered results for different noise settings by different methods.
Dataset Indain Pines Washington DC Mall

Case Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Method [PSNR SSIM  SAM [PSNR SSIM  SAM [ PSNR SSIM  SAM | PSNR SSIM  SAM [ PSNR SSIM  SAM | PSNR  SSIM  SAM
Observed [ 16.671 0.2707 16.9289[10.332 0.1099 31.6523[ 11.298 0.1353 29.1382] 16.786 0.2704 40.5074[ 10.194 0.0876 51.2519] 11.106 0.1083 50.3293
LRMR [33.615 0.8917 1.9383 [31.013 0.8297 2.6645 | 28.602 0.8235 5.3366 | 32.978 0.9137 7.2692 | 30.755 0.8788 8.7605 | 30.074 0.8731 10.1731
LRTDTV |38.297 0.9764 1.2250 |34.224 0.9243 2.3803 | 31.842 0.9081 4.2470 | 34.802 0.9326 5.9491 | 32.469 0.8936 8.9898 | 32.253 0.8844 12.2201
DIP-2D [33.652 0.9039 1.9670 |23.984 0.7304 6.7097 | 23.056 0.7154 83755 | 33.947 0.9336 4.9650 | 22.473 0.7323 12.6629| 24.138 0.7774 11.5496
DIP-3D [30.867 0.8982 2.6423 |23.382 0.7354 6.8498 | 23.212 07264 65718 | * * * * * * * * *
DIP-TR [38.977 0.9674 1.0701 [34.610 0.9609 1.7935 |33.1176 0.9317 2.9616 | 35.8488 0.9526 4.0356 | 33.8411 0.9346 4.9402 |32.8579 0.9264 6.2560
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Numerical Experiments
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Clean image Noisy image LRMR [12] LRTDTV [13] DIP-2D [6] DIP-3D [7] DIP-TR

Fig. 2. The denoising results by different methods in the simulated experiments. Top row: band 57 in Indain Pines with Case
2. Bottom row: band 66 in Washington DC Mall with Case 3.
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Numerical Experiments

DIP-2D [6] DIP-3D [7] DIP-TR

Fig. 3. The denoising results by different methods for band
103 of the real HSI Urban.

19






